Structural Similarities between Spinach Chloroplast and Cytosolic Class I Fructose 1,6-Bisphosphate Aldolases : Immunochemical and Amino-Terminal Amino Acid Sequence Analysis.
نویسندگان
چکیده
Immunochemical studies using polyclonal antisera prepared individually against highly purified cytosolic and chloroplast spinach leaf (Spinacia oleracea) fructose bisphosphate aldolases showed significant cross reaction between both forms of spinach aldolase and their heterologous antisera. The individual cross reactions were estimated to be approximately 50% in both cases under conditions of antibody saturation using a highly sensitive enzyme-linked immunosorbent assay. In contrast, the class I procaryotic aldolase from Mycobacterium smegmatis and the class II aldolase from yeast (Saccharomyces cerevisiae) did not cross-react with either type of antiserum. The 29 residue long amino-terminal amino acid sequences of the procaryotic M. smegmatis and the spinach chloroplast aldolases were determined. Comparisons of these sequences with those of other aldolases showed that the amino-terminal primary structure of the chloroplast aldolase is much more similar to the amino-terminal structures of class I cytosolic eucaryotic aldolases than it is to the corresponding region of the M. smegmatis enzyme, especially in that region which forms the first "beta sheet" in the secondary structure of the eucaryotic aldolases. Moreover, results of a systematic comparison of the amino acid compositions of a number of diverse eucaryotic and procaryotic fructose bisphosphate aldolases further suggest that the chloroplast aldolase belongs to the eucaryotic rather than the procaryotic "family" of class I aldolases.
منابع مشابه
Antigenic relationships between chloroplast and cytosolic fructose-1,6-bisphosphatases.
Cytosolic fructose-1,6-biphosphatases (FBPase, EC 3.1.3.11) from pea (Pisum sativum L. cv Lincoln) and spinach (Spinacia oleracea L. cv Winter Giant) did not cross-react by double immunodiffusion and western blotting with either of the antisera raised against the chloroplast enzyme of both species; similarly, pea and spinach chloroplast FBPases did not react with the spinach cytosolic FBPase an...
متن کاملComparative amino acid sequence of fructose-1,6-bisphosphatases: identification of a region unique to the light-regulated chloroplast enzyme.
Chloroplast fructose-1,6-bisphosphatase (Fru-P2-ase) is an essential enzyme in the photosynthetic pathway of carbon dioxide fixation into sugars. The properties of the chloroplast enzyme are clearly distinct from cytosolic gluconeogenic Fru-P2-ases. Light-dependent activation by way of a ferredoxin/thioredoxin system and insensitivity to AMP inhibition are distinctive characteristics of the chl...
متن کاملIsolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase.
Two different isoenzymes of fructose-P2 aldolase can be resolved by chromatography of crude spinach leaf extracts on DEAE-cellulose columns. The acidic isoenzyme comprises about 85% of the total leaf aldolase activity. The two forms differ in primary structure as judged by their distinctive amino acid compositions, tryptic peptide patterns, and immunological properties. Only the acidic isoenzym...
متن کاملCharacterization, kinetics, and crystal structures of fructose-1,6-bisphosphate aldolase from the human parasite, Giardia lamblia.
Class I and class II fructose-1,6-bisphosphate aldolases (FBPA), glycolytic pathway enzymes, exhibit no amino acid sequence homology and utilize two different catalytic mechanisms. The mammalian class I FBPA employs a Schiff base mechanism, whereas the human parasitic protozoan Giardia lamblia class II FBPA is a zinc-dependent enzyme. In this study, we have explored the potential exploitation o...
متن کاملNucleotide sequence analysis of a cDNA encoding chloroplastic fructose-1,6-bisphosphatase from pea (Pisum sativum l.).
Fructose-1,6-bisphosphatase (EC 3.1.3.11) catalyzes the dephosphoric reaction of Fru-1,6-bis P to Fru-6-P and Pi. Two isozymes exist in higher plants, one in the cytosol and the other in the chloroplast. The latter is a pivotal enzyme for photosynthetic carbon dioxide assimilation. It is active in the light but almost inactive in darkness. The lightmediated activation of the enzyme is attribute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 1989